Phosphatidylinositol 3-kinase-dependent signaling modulates taurochenodeoxycholic acid-induced liver injury and cholestasis in perfused rat livers.
نویسندگان
چکیده
Taurochenodeoxycholic acid (TCDCA), but not glycochenodeoxycholic acid (GCDCA), activates a phosphatidylinositol 3-kinase (PI3-K)-mediated survival pathway in vitro. Here, the effects of PI3-K inhibition on TCDCA- and GCDCA-induced hepatocellular injury, apoptosis, and bile secretion were examined in the intact liver. In isolated perfused rat livers, bile flow was determined gravimetrically. Hepatovenous lactate dehydrogenase and alanine aminotransferase efflux as markers of liver integrity and biliary secretion of 2,4-dinitrophenyl-S-glutathione (DNP-GS) were determined photometrically. Apoptosis was assessed by immunohistochemistry of active caspase-3 and cytokeratin 18 in liver tissue. Phosphorylation of protein kinase B (PKB/Akt) as a readout of PI3-K activity was determined by immunoblot analysis. Bile acid concentrations were determined by gas chromatography. TCDCA (25 muM) induced moderate liver injury by hepatocellular apoptosis and distinctly reduced bile flow and DNP-GS secretion. In contrast, GCDCA (25 muM) induced severe liver injury by extensive hepatocyte apoptosis. TCDCA strongly activated PI3-K, whereas GCDCA did not markedly affect PI3-K activity. Inhibition of PI3-K by 100 nM wortmannin enhanced TCDCA-induced liver injury and apoptosis and tended to aggravate the cholestatic effect of TCDCA. In contrast, wortmannin reduced GCDCA-induced liver injury and apoptosis. Bile acid uptake tended to be reduced by wortmannin. The cholestatic effect of GCDCA was aggravated by wortmannin. Inhibition of PI3-K markedly aggravated TCDCA-induced but not GCDCA-induced liver damage and hepatocyte apoptosis. Thus TCDCA appears to block its inherent toxicity by a PI3-K-dependent survival pathway in the intact liver.
منابع مشابه
Resistance of rat hepatocytes against bile acid-induced apoptosis in cholestatic liver injury is due to nuclear factor-kappa B activation.
BACKGROUND/AIMS To examine the extent and mechanisms of apoptosis in cholestatic liver injury and to explore the role of the transcription factor nuclear factor-kappa B in protection against bile acid-induced apoptosis. METHODS Cholestatic liver injury was induced by bile duct ligation in Wistar rats. Furthermore, primary cultures of rat hepatocytes were exposed to glycochenodeoxycholic acid ...
متن کاملProtoporphyrin-induced cholestasis in the isolated in situ perfused rat liver.
The pathogenesis of liver disease in protoporphyria has been presumed to result from the hepatic deposition of protoporphyrin. To examine the effects of protoporphyrin on hepatic bile flow and histopathology, studies were performed employing an isolated, in situ, rat liver perfusion system. Rat livers in the control group were perfused with 0-80 mumol sodium taurocholate/h. Rat livers in the ex...
متن کاملTauroursodeoxycholic acid exerts anticholestatic effects by a cooperative cPKC alpha-/PKA-dependent mechanism in rat liver.
OBJECTIVE Ursodeoxycholic acid (UDCA) exerts anticholestatic effects in part by protein kinase C (PKC)-dependent mechanisms. Its taurine conjugate, TUDCA, is a cPKC alpha agonist. We tested whether protein kinase A (PKA) might contribute to the anticholestatic action of TUDCA via cooperative cPKC alpha-/PKA-dependent mechanisms in taurolithocholic acid (TLCA)-induced cholestasis. METHODS In p...
متن کاملThe Hepatoprotective Effects of Corn Silk against Dose-induced Injury of Ecstasy (MDMA) Using Isolated Rat Liver Perfusion System
Background: Corn silk (CS) is widely used in Iranian traditional medicine. The aim of this study was to investigate hepatoprotective activity of CS by Isolated Rat Liver Perfusion System (IRLP). Methods: Hydro-alcoholic extract of corn silk (10, 20, 40, and 100 mg kg-1) was evaluated for its hepatoprotective activity by IRLP. Phenol and flavonoid contents of the extract were determined as gal...
متن کاملCa -dependent Protein Kinase C Isoforms Induce Cholestasis in Rat Liver*□S
Bile secretion is regulated by different signaling transduction pathways including protein kinase C (PKC). However, the role of different PKC isoforms for bile formation is still controversial. This study investigates the effects of PKC isoform selective activators and inhibitors on PKC translocation, bile secretion, bile acid uptake, and subcellular transporter localization in rat liver, isola...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Gastrointestinal and liver physiology
دوره 289 1 شماره
صفحات -
تاریخ انتشار 2005